
RD-Ai56 625 AN IMPROVED FFT (FAST FOURIER TRANSFORM) FOR A FOUR i/
PARALLEL PIPE SIMD AR.. (Uj NAVAL UNDERWATER SYSTEMS
CENTER NEW LONDON CT NEW LONDON LAB..UNCLASSIFIED T T TYLASKA ET AL. 01 MAY 85 NUSC-TR-7363 F/G 1211 NL

mnmmmnmmmmm
IIIIIIIIIIIIII

IEIIIIEEEEI h

mEhh|E

11111" 111 !2.8 lii2.5

IW 13 112-1.8

1--25 j

MICROCOPY RESOLUTION TEST CHART
NATIONAL RUPFAU nr gTANrARDs ! A

.Z 2'

4

..

""U " """" ' " " °::'" " "' " "" ; ":" " " ":::" "2 " "' " :

NUSC Technical Report 7383
1 May 1985

An Improved FFT for a Four Parallel
Pipe SIMD) Arithmetic Processor
Theodore T. Tylaska
Thomas C. Cholnaki
Submarine Sonar Department

In

In

DTIC

92Naval Underwater Systems Cne
Newport, Rhode Island INew London, Connecticut

L~

Approved for public release; distribution unlimited.

85 6 19 032

Preface

This report was prepared under Project No. A75044, "Very High Speed Integrated
Circuit Insertions Into the Enhanced Modular Signal Processor," Principal Investigator, T.
T. Tylaska (Code 325). The Sponsoring Activity is the Naval Sea Systems Command (Code
PMS 412).

The Technical Reviewer for this report was Dr. G. C. Carter (Code 3314).

Reviewed and Approved: I May 1985

F. J. Kingsbury
Head. Submarine Sonar Department

The authors of this report are located at the
New London Laboratory. Naval Underwater Systems Center.

New London. Connecticut 06320.

-.. -a

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS AuT3

REPORT DOCUMENTATION PAGE
I&. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 OISTRIBuTION/AVAILAgiITY OF REPORT

2b. ECLSSIICATON/DOWGRADNG CHEULEApproved for public release;
Zb. ECLSSIFCATON DOWGRAING CHEULEdistribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

TR 7363

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION
Naval Underwater Systems (if apicable)
Center________________________________

6C. ADDRE SS (CMv Stare, and ZIP COde) 7b. ADDRESS (0ry, State, and ZIP Code)

New London Laboratory
New London, CT 06320

8a. NAME OF FUNDING/ SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

WsigoDC 20362 ELEMENT NO. NO. NO ~ ACCESSION NO
Wahigtn,64507N A75044 S1 440

11 TITLE (Include Security ClaS~SifiCation)

* AIN IMPROVED FFT FOR A FOUR PARALLEL PIPE SIMD ARITHMETIC PROCESSOR

*12 PERSONAL AUTHOR(S)

Theodore T. Tvlaska and Thomas C. Choinski
* 13.. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (year, ot.Dy t PAGE COUNT

Progress IFROM _____TO I 1 May 1985
16 SUPPLEMENTARY NOTATION

7 COSATI CODES IS. SUBJECT TERMS-(Continue on reverse if necessary anid identify by block number)
FIELD GROUP SUB-GROUP --Discrete Fourier Transforms Parallel Processors

09 0-1Fast Fourier Transforms -Signal Processor
Architectures., -

") ABSTRACT (Continue on reverse of necessary and identify by block number)

An algorithm is derived that reduces the execution time of a fast Fourier transform
*(FFT) by a factor of 4 utilizing a loosely coupled four parallel pipe processor that

- has a single instruction, multiple data (SIMD) stream architecture. This algorithm
* -. distributes the FFT computations among the four parallel pipes for the radix-4 and
- . the mixed radix-2/-4 cases. The algorithm is demonstrated specifically for both a

16- and a 32-point FFT. In addition, the radix-4 FFT algorithm is derived in detail,
along with formulas for the execution times and a method that computes the inverse
FFT. The necessity for prescrambling the input data is explained and a simple

*hardware implementation is given. .4

20 :)iSTR1UT'ONiAVAILAILiTY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
Cl NCLASSiIFEDUNLIMITEo 03 SAME AS RPT E3TIC USERS 1.IjCLAS)I\ F' lD

"2a 'JAME OF RESPONSIBLE NOIVIDUAL 22b TELEPHONE (include Area Code) I22c. OFFiCE SYMBOL
Thomas C. Choinski (203) '440-5391

00 FORM 1473, 84 MAR 83 APR edition mvay oe used unltil C'flaut.Sd SCRT LSIIAINO 15PG

All other editions are obsolete CCLSS lE

...

TR 7363

TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS i.i..

LIST OF TABLES iii

INTRODUCTIONi...

AVAILABLE ARCHITECTURE 2

CONCEPT AND DERIVATION 2
Derivation of a Radix-4 FFT. 2
Adapting Radix-4 FFT to a Four Pipe Arithmetic Processor. 13

PRACTICAL CONSIDERATIONS 16
FFT Size 16
Mixed Radix FFT's and Speed Formulas. 17
Operand Memory 22
Bit Reversal to Re-Order Input Data 22
Inverse DFT's 26

CONCLUSION 27

REFERENCES 29

BIBLIOGRAPHY 31

Accession For

.TTTS GRA&I
DTIC TAH
U)tannounced D
Just1ificatio\By-
Distribution/

Availability Codes
Avail and/or

"."~~~ i special ,' ,.

lPl

"ee i/ i i
""- Reverse Blank

0

.- .

'" "- -- " -'-' -- ' -'-- '- --- '--,,' , '--.- '-.."

TR 7363

-. LIST OF ILLUSTRATIONS

Figure Page

1 Architecture of the Four Parallel Pipe Arithmetic
Processor 3

2 Internal Architecture of One Pipe" 4
3 Basic Radix-4 Kernal Computation of a Radix-4 FFT. 10
4 Flowchart for a 16-Data-Point Radix-4 FFT 14
5 Partial Flowchart for a 32-Data-Point FFT Using

Two Radix-4 Stages Followed by One Radix-2 Stage 18
6 Partial Flowchart for a 32-Data-Point FFT Using One

Radix-2 Stage Followed by Two Radix-4 Stages 20
7 Digit Reversal for a Radix-2/-4/-4 FFT 25
8 Generalized Bit Reversal Hardware 25

LIST OF TABLES

Table Page

I Efficiency of a Four Parallel Pipe FFT As a Function of
Transform Size 17

2 Successive Sorts of Input Data Points for a Radix-2 FFT... 23

iii/iv
Reverse Blank

0

-. -" ' -- - . -- -.. . * . - -,.. - . *. . . . ,.. . . -. , - - . . -. .. , .- - . -- -.- - •.

TR 7363

AN IMPROVED FFT FOR A FOUR PARALLEL PIPE SIMO ARITHMETIC PROCESSOR

I NTRODUCT ION

The effectiveness of sonar and radar is being improved by increased
processing of the received signals. The fast Fourier transform (FFT) is a
basic building block for various signal processing enhancement algorithms.
The computational load imposed by signal bandwidths and number of oeams
requires parallel processors.

A militarized signal processor, the AN/UYS-2, that utilizes parallelism
ana data flow constructs is being constructed to satisfy the need for
increaseo computational capability. Size constraints, power and reliability
requirements, etc., along with given internal data transfer rates, dictated
a single-instruction, multiple-data (SIMD), four parallel pipe arithmetic
processor. Connector pin limitations on the boards that are useo to package
the processor necessitated use of a common coefficient memory feeaing the
four parallel data pipes. This common coefficient memory also is the only
cross-connection between the four pipes.

The problem is to utilize the four parallel data pipes in the given
architecture to perform the FFT. One method would transfer data in four
independent sets and then perform four parallel FFT's in lock step.
However, this is not. compatible with the data flow architecture of the
AN/UYS-2. Another method would perform one FFT on one data set four times
faster using the four parallel pipes simultaneously.

This report describes the second method, whereby an FFT computation on
a SIMD four parallel pipe arithmetic processor can proceed approximately
four times faster than on a single pipe arithmetic processor with the same
instruction cycle rate. The basic concept uses four parallel data
processing pipes to compute one radix-4 FFT. Only one pipe would be
employed to perform tne last stage of the FFT. The first step in explaining
the concept is to derive a suitable version of the radix-4 FFT. iext,
formulas are derived to show the addition and multiplication time needed to
compute an i-point FFT. Then, the FFT algorithm for using mixed radixes is
given. Tnis nethod works almost as well when computing radix-2 or [nixed
radix- - ana -4 FFT's.) An efficient scheme for prescrambling the nixed
radixes is also ueriveo. This method can be utilized to compute the inverse
discrete Fourier transform.

".

- ; . am md ,-L.----,- m aw ,, lmhmml(lm m " - . ..

TR 7363

AVAILABLE ARCHITECTURE

The external architecture for the four parallel pipe arithmetic
processor is shown in figure 1, and the internal architecture of a pipe is
shown in figure 2. Each pipe has its own operand memory that can be
simultaneously read and written to. A limitation of this architecture is
that the common coefficient memory is shared by all pipes, and crosscoupling
between pipes is accomplished by one pipe writing into memory and another
pipe reading from that same memory.

With the above parallel processing architecture in mind, the question
is how to utilize the hardware to compute the FFT. The radix-4 FFT is shown
to be an efficient way to compute the FFT, irrespective of what hardware is
used, because four data points are multiplied by the vector [1, j, -I, -j],
which reduces the number of complex multiples required by a factor of about
4.1,2

CONCEPT AND DERIVATION

In partitioning the FFT into four pipes, i.e., placing one fourth of
the data points into each of the separate pipes, a decimation-in-time on the
incoming data set can be performed. One formulation of the radix-4
decimation-in-time FFT does not require cross-connection between the four
data sets until the very last stage of the FFT. For this last stage, the
independent results of the four separate pipes are transferred into the
operand memory of only one pipe. This transferral operation is necess-ary
because this stage of the FFT computation requires access to all points to
form the resulting frequency sample.

DERIVATION OF A RADIX-4 FFT

The derivation of the radix-4 FF[is based on a decimation-in-time of
the input sequence, x(n), into smaller subsequences: Assume that the number
of input data points is a power of 4; i.e., N = 4v, and the object will be
to compute the discrete Fourier transform (DFT):

N-1 -2nrj

X(k) : x(n)'Ak WN e N k 0, 1, N - 1; j /='T (1)

n=O

2
. . . -- . .-

TR 7363

PARALLELI INPUT1 TI

STOERTOR

Iy STNDR I

FUNCTTRONAL

* ~ ~ ~ ~ E Fi Ure -I .ALE Arhietue UfTheFu PARALLEL Pip ArThei Prcso

MOUL

3

- - - -----

TR 7363

IIN U FISTI
I LRST OUT

I I
REISE REISE

I RELGITE LEGITRC

I ARITHMETI AIRITHEI

IOUT

igr 2. Itra rhtcueo n i

4

TR 7363

Since N is a power of 4, separate the input sequence, x(n), into four
N/4 data point subsequences as follows:

4r, 4r 1, 4r + 2, 4r + 3,

* where

r = 0, 1, . , (N/4) -1.

Now write the OFT as

(N/4)-1 (N/4)-1

X(k) = x(4r)WNrk x(4r N)N4rl)k

r=0 r-O

(N/4)-l (N/4)-r.x(4r+ 2)W1
4 r+2)k x4r + 3)W(4r+3)k 2)

r=0 r= 0

k = U, 1 ... , N- 1.

Next, write the OFT in terms of the four subsequences:

(N/4)-l (N/4)-I
X(k) x(4r)WN r + W N x(4r 1)WN4rk

r=O r=O

(N/4)-l (N/4)-"

+ 2x(4r+ 2)
4rk 3 x(4r 3,4rk. (3)

xr4 U r)Nr 0 N ,,

5

................-..

;.,.h - ... J," - -...

TR 7363

But

4Nr (4)

4r1WN W N(4

because W
4r e N e (N(/44 "

Ne (N/4)

So

(N/4)-1 (N/4)-I
,Wrk + Ak x(4r

X(k) = " x(4r)(N/4) N x(4r (N/4)

r=O r=0

(N/4)-1 (N/4)-1
w k.rk + 3k rk1
2k x(4r 2) Wr(/4) 3 x(4r * 3) rk

r =0 r=O

Although the index k ranges over N values, k = 0, 1, N - 1, each
of the sums, GO(k), Gl(k), G2(k), and G3(k), need be computed for k
= 0, 1, 2, , (N/4) - I because each is periodic in k qith a period of
N/4, where

Go(k) = x(4r)W rk (6)
r =0 (N/4)

* (N/4)-1

G1 (k) x(4r + I)W(/ 4), 7)

r 0

6

.. . . .: .: ,. : : . ., , .,

TR 7363

(N/4) -1

G (k) =x(4r + 2) Wrk/) (8)

2N(N/4)

G3(k) =x(4r +3)W(N/ 4). (9)

Note that each of the sums in the above expressions is an N/4 data
point transform. Also, as k ranges over 0, 1, ,N - 1, each of the sums
produce only N/4 different values of the NO4 point transforms.

Now rewrite equation (5) as

X(k) G= k G0 G(k) WN 2G (k) W 3 G (k), k =0, 1, .. ,N -1. (10)

But, as noted above, each Gi(k), i =0,1,2,3, is periodic in k of period
N/4. Since k ranges from 0, 1, ,N - 1 values, partition k into four
sequences, which are given by

m, m + (N/4), in '2(N/4), in +3(N/4); in =0, .. ,(N/4) -1.

Substitute these in values for k in equation (10) to obtain the basic radix-4
kernal:

in2M 3m
X(in) G0(rn) WNGl(in) W G (mn) + JG3 (in), mn 0, (.. ,(N/4) -1 (11)

7

TR 73b3

(/[m+(N/4)]G 1(m) + w2[m+(N/4)] G (m)

XLm + (N/4)] = ,orn) N W2-

+ W3Lm+(N/4)]G 3 (m), (12)

xLm + 2(N/4)] Go(m) + w [m+2(N/4)]G1 (m) + w2[m+2(N/4)] G2 (m)

+ wi[m+2 (N/4) G3 (m), (13)

and

X',n 3(/4)] G (m) + w m+3(N/4)I G1(m' + 2[m3(N/4) (WN0 N Nm2

+ W3[m+3(N/4)]G3(m). (14)
N G3(.(4

Separdting the k frequency terms into four sets, as shown above, and
fact.oring common powers of WN reouces the number of multiplications in

equations (11) through (14) from 12 to 3. This reduction is seen by noting
that

w[m+(N/4)] Wm W(N/4) = (-j)wm (15)

w2[m+(N/4)] =W2m W2(N/4)= (_l)W2m, (16)

W3Lm+(N/4)] 3m 3 (N/4) - 3mN WN W N (+.)WN (17)

S8

TR 7363

WLM+2(N/~4)] (-1)OWm~ (18)
N N

~2[m+2(N/4)] 2lWm, (19)
WN()0 4

W3Lm+2(N/4)] (-1) O3m(20)N N'

W [m+3(N/4)] (+j) OW i (21)

WLm(I) (-1) OW2 (22)

ana

W3tm+3(N14)]= * 3m (3WN ()WN (3

Now, where appropriate, substitue equations (15) through (23) into 411)
through (14) to simplify the basic radix-4 kernal in equations (24) through
(27):

X(m) =G 0(m) + Win G (mn) W 2m G (i) W 3m G (in) (4

in =0, 1, . ,(N/14) -1,

XLm +(N/4)] G k(m) (-j)WNu (M) (-1)WN2 G (mn) (+j)WN3 G3 A, (25)

XLm 2(N/4)j G (i)('m n Im) () 2m G i) - W3m .) (6
0' /Nm N1P G2(A N U3 (), 26

9

TR 7363

and

X~m +3 (N/4)] G0(m + j)Wm G1(m) +(-l)W2m G (m) +(-j)w 3mG (m). (27)

The flowchart for the computation in equations (24) through (27) can be
drawn as shown in figure 3.

0WN1
G0(m) X(M)

WN
G3(m) X m + (N/4)]

m 0 ,1,...,(N/4)-1

of the transforms can be broken down to four (N/4)-point transforms to create
another stage in the computation. This staging can be continued until one of
the transforms contains only four points; for example, when m =0 and N =4
one obtains

11

TR 7363

X(o) - G (0) + W O 402) + wOG 3 (0), (28)

X(O + 1) = Go(O) - jwOGI(O) - wOG 2 (0) + jWUG 3(O), (29)

00 0
X(0+2) =G0(0) -1W 4G 1(0) + W4G 2(0) -W4 G3(0)1 (30)

and

X(O 3) G (0) jW0G (0) - w4 G2 (0) - jW4G3 (0). (31)

But

Go(O) = x(O), (32)

GI(O) = x(1), (33)

G2(O) - x(2), (34)

and

G3(0) x(3). (35)

Equations (28) through (31) can be condensed to

X(k) x(o)W Wk X(1) + W 2k x(2) + WR x(3), k -0,1,2,3. (36)

Thus, equations (24) through (27) with m = 0 give tne same result as taking
a four-point DFT according to equation (1), as shown below:

11

-. % .-'... .. ,' . . . , '.' . .' " -. .. . ' - . * . .. '. " .. • - . . - . ". . . ., - " . . "-

TR 7363

3

X(k) Y n Wnk k ,,,,(37)

n=O

X(0) =x(0) + x(l) *x(2) + x(3), (38)

1 2 3 (9X(1) =X(0) +W 4 x(1) + WO~(2) + 4J4x(3), (9

X(2) x(0) + W 2XI +.0. 4 x() 6x() (40)

and

X() x0) * 3 6 w9 3'41

X(3) x(O) W4 X(I) W4 x(2) W4x3,(1

whlich reduce to

X(0) =x(O) x(1) x(2) x(3), (42)

X(1) =x(0) -(j)x(l) - x(2) + jx(3), (43)

*X(2) =x(0) -x(1) +x(2) -x(3), (44)

and

X(3) =x(O) + (j)x(l) -x(2) -jx(4). (45)

The result is an algorithm that repeatedly uses the basic computation
ifigure 3 can be derived.

12

TR 7363

The advantages of deriving equations (24) through (27) is that the
number of multiplications in the basic radix-4 kernal is reduced from 12 to
3 because Gl(m) - (a + jb) multiplied by a power of j reduces to

(a + jb)(j) a -b + ja (46)

and

(a + jb)(-j) = b - ja. (47)

Also

(a + jb)(-) = -a - ib. (48)

Thus, by interchanging the real and imaginary components or by negating, one
is able to perform the required multiplication.

The radix-4 decimation-in-time FFT was derived, and a reduction in
multiplicatons by a factor of 4 was shown. Next will be shown how the
radix-4 FFT is computed on a four pipe arithmetic processor similar to the
one in figures I and 2.

ADAPTING RADIX-4 FFT TO A
FOUR PIPE ARITHMETIC PROCESSOR

The object here is to divide the input sequence evenly among the four
pipes and let each pipe perform a radix-4 kernal computation on its input
data points independently of other points in other pipes. See figure 4 for
the flowchart for a 16-point radix-4 FFT. Since the four parallel
computations use the same coefficients and use the points in exactly the
same manner, the computation can be carried out using a SIMD architecture
with a common coefficient memory.

The important point is that in stage I of the FFT each radix-4 kernal
computation in a given pipe "calls" on the data points only within that
pipe, and no cross-connection between operand memories is required.

13

4 - ••.- - - - (d W ~ lo l lli n~mm lW m.

TR 7363

X(O) G()x(0)

x(4) 4-X(1)

X(8) FF G()-\ \x(2)

GO((3)

Xj1) -G ()x4

X(5) 4 lQ-W 11,X(5)

X()9) x(6)

x(2) G20 -x(8)

x(6) 4-X(9)

X(10)x(10)

xx(1 1)

-. x(3) G) X A vx(12)

4x(7) 4- 13)X3)

FFT 3(2)x(14)

1 ~ 1

14

0'

TR 7363

However, stage 2 (the last stage in general) requires access to all the
points of the intermediate results from the previous stage. The
architecture restriction on crosscoupling dictates that a single pipe must
be used for the last stage of the computation. The architecture allows
points-to be selectively read from the individual operand memories and
routed to a given pipe, say the first pipe in figure 1.

In the last stage of the FFT the appropriate field in the microword of
the microsequencer controlling the various data paths is set to read Go(0)
from operand memory 1, GI(O) from operand memory 2, G2(0) from operand
memory 3, and finally G3(0) from operand memory 4 to compute X(O).
Likewise the remaining intermediate results are selected from the individual
pipe operand memories and combined in pipe I to produce X(2), X(3),...,X(N -
1).

In general, if N = 4v , then v - I stages of the radix-4 FFT can be
computeo in the four parallel pipes. The last stage, the Vth, would then
be computed using only one pipe.

A measure of the time required for an N point radix-4 FFT can be
arrived at as follows: Let N - 4v; thus, the FFT requires log4 N)
stages for the FFT computation. By looking at the basic radix-4 Kernal,
given in equations (11) through (14), and its flowchart in figure 3, it is
seen that 3 complex multiplies ana 12 complex adus are required per kernal.
Also, note that (N/4)-Kernals must be computed for each stage. If a unit of

." time is required for one complex multiply, then the multiply time for an N =
" 4 v point radix-4 FFT is given by

3 [log 4(N) - 1](N/ 3(N log4 (N) - (49)
,.-4 4

Cl where

3 [log 4 (N) -1 N

- is the time require, to compute the first v - 1 stages in parallel and
- 3(N/4) is the multiplication time to compute the last stage. Similarly, the

time for computing the complex adds is given by

15

,I

*'i. * ,.*.

TR 7363

12(N/4) 4 + 12(N/4) = 3N[1 lo 4 N (50)

By judicial use of the architecture within a given pipe, as shown in
figure 2, one is able to reduce the addition time by "pipelining in time"
the FFT computations and performing two parallel additions for each
multiplication. 1 (The phrase "pipelining-in-time" means that three sets
of latches are interposed in the path through a given arithmetic processor
(one of four parallel pipes) so that after three clock periods the pipe is
full, and addition and multiplication is overlapped.) In other words, the
time for computing a given FFT is proportional to the time for
multiplication, which is given by

log04 (N)-1
* Time= " 1" i+ 4' (51)

where 3ne can see that as N becomes larger the multiplication time decreases
to approximately one fourth of that when using a single pipe. Thereby, one
FFT can be computed approximately four times faster by using the four
parallel pipes.

Next, some practical considerations in implementing this radix-4
algorithm on a four-parallel-pipe architecture are given; i.e., the size of
the FFT, size of the operand memory, mixed radix FFT's, speed formulas, bit
reversal required to re-order input data, and inverse FFT's are discussed.

PRACTICAL CONSIDERATIONS

FFT SIZE

The size of the FFT determines how efficiently the four parallel pipes
can be used. Generally, the more data points there are to transform, the
less the effect of using only one pipe for the last stage nas on overall
computation time. The time required to transform several FFT sample sizes,
using both a single- and a parallel-pipe FFT, are given in table 1, where it
can be seen that the scheme approaches tne theoretical reduction in speed of
a factor of 4.

16

0L

TR 7363

Table 1. Efficiency of a Four Parallel Pipe FFT
As a Function of Transform Size

Ratio Of
Size of FFT Time for Time for Single- to Parallel-

Single-pipe FFT Parallel-Pipe FFT Pipe Scheme

256 768 336 2.3

1,024 3,840 1,536 2.5

4,096 18,432 6,912 2.7

16,384 86,016 27,648 3.1

Another characteristic of FFT size is that it roust be a power of 4.
Efficiency is increased by this restriction because the powers of AN are
located at the 90-deg quadrant points of the unit circle, and most
multiplications reduce to multiplying by +1, +j, -1, or -j. However, this
parallel processing method can be adapted to work on data sizes that are a
power of 2.

MIXED-RADIX FFT's AND SPEED FORMULAS

Acoustic signal processing generally uses time-bandwidth products where
512, 1024, 2048, or 4096 points are to be transformed. Since 512 and 2048
are powers of 2 and not 4, a mixed-radix FFT can be employed to retain most
of the FFT efficiency by writing 512 as 2- 44 and 2048 as 2 * 45. For
the 512 sample FFT, one radix-2 stage and four radix-4 stages must be
performed to complete the computation. Similarly, for the 2048 computation,
one radix-2 stage and five radix-4 stages are required.

When performing the mixed radix FFT on the SIMD architecture in figure
1, the radix-2 stage can be performed first or last. A slignt increase in
speed can be achieved when the radix-2 kernals are used in the last stage.
The reason for this can be explained using a 32 = 2. 42 data point FFT as
an example.

The example FFT is performed by computing a radix-4 first stage, a
radix-4 second stage, and finally a radix-2 third (last) stage (figure 5).
First, the 32 original data points are divided equally among the 4 pipes so
that each pipe has 8 points. Two radix-4 kernals are computed in each of

17

-4 . . . ___ , . ,_._ _ ," - ;' . .-,' " " ' " : "'":"": - : i . : . ."' '.'.'.

TR 7363

X(O) X(O)
x(8) X(1
X(16) PON 4 x(2)
x(24) FT)p14 x(3)

X(2) 4_0 #x(4)
X(1O) POINT 16-POINT x5
x(1 8) x(6)
x(26) FTF x(7)

x(4) x(8)
x(12 4-\\\\\\YV11114 X(9)

x(20) PON \\Y //t x(1O0)
x(28)

'M11
x(6) - \\\=i Nx(12)

0x(1) -PITX0 3)
x(22) FTAx(1 4)
x(30) x(1 5)

x(1) 4-x(16)
x(1 7)

x(17) FF 6PDN Hx(l8)
x(25) FTXl9

x(3) x(20)
*X~ . 1) x(21)
*X(19) PIT0 iAIXM\ (2

x(27) FF H/Y\x(23)

*x(5) 4 (4
x(13)x(25)

x(21) x(26)
x(29) x(27)

*x(7) x(28)

x(23) x(30)

Fi gure 5. Partial Flowchart for a 32-Data-Point FFT Us ing
Two Radix.4 Stages Followed by One Radix-2 Stage

TR 7363

the four parallel pipes in the first stage. Now, the second stage radix-4
computations are performed, but for this stage points from pipes one and two
are crosscoupled. Because of the crosscoupling restriction, half of the
second stage computations must be performed in only one pipe, say pipe one.
Similarly, the points in pipes three and four must be combined into one
pipe, say pipe three. Therefore, only two of the possible four pipes can be
used in the second stage FFT computation.

The third stage computation presents the same problem as the second
stage because data points from pipes 1 and 3 must be combined in only one
pipe, say pipe one. Re-ordering the staging as 4, 4, and 2 prevents the
four pipes from being used in parallel for the last two stages. Also, in
the last stage, the radix-2 FFT will require multiplication by 32/2 - 16
different powers of 432. However, the first stage multiplication
coefficients reduce to powers of J, which speeds up the computation time.

Alternatively, we can reorder the 32 data-point FFT stages, as shown in
figure 6, so the radix-2 stage is performed first, followed by two radix-4
stages. The first stage radix-2 kernal computations are performed in the
four parallel pipes, with each pipe computing four 2-point FFT's. The
second stage radix-4 kernal computations can again be performed in the four
parallel pipes because each computation requires only those points already
in its own operand memory. The result is that four 8-point FFT's are
performed in parallel in the second stage.

The third stage is the only computation that needs data points from the
other pipes. Therefore, the third stage radix-4 kernal computations must be
performed in only one pipe, say pipe one. This arrangement permits two
stages of the FFT to be done using the four parallel pipes, and only the
last stage must be done using one pipe. Also, the radix-2 coefficients
needed in the first stage are +1 or -1, thereby eliminating multiplication
by powers of W32. In general, whenever radix-2 and -4 stages are
required, the radix-2 stage should be performed last.

Formulas for the number of multiplications involved for mixed radixes
*Q are given next.

When N is equal to two times some power of four (i.e., N 2 * 4v),
the complex multiply time can be determined by allowing for 3(N/4)
multiplies for each radix-4 stage and N/2 multiplies for each radix-2
stage. If any stage is performed in four parallel pipes the time to compute
the complex multiplies should be divided by four. The only exception
applies to any radix-2 or -4 first stage. The first stage doesn't contain
any multiplies because the coefficients will be +1 for radix-2 and +i or *j
for radix-4.

1

19

..6'' ' -: -= ' " - ..: ., " k" " ' " : { , _ ' " " , " .'' , -' ., .'/

TR 7363

X(0) 2-x(0)
x(1)

x(20)x(2)
EE -- = 4-X(3)

x(8) 2-POINT POINT x4x(24)FFT FFT'sX(5)

x~l) 2-OINTx(6)
x(28) I.......x(7)

FFT x(8)
x~l) -- :1 1X(9)

x(1 F -8 X(1)
X()2PITPITRADIX-4 ()

POINFT KERNALS x(l 2)
x(5 E- x(l 3)

x~l) ''F"11111, - - 11 x(l 4)
x(29) FF1x(15)

x(2) 2-POINT x(l 6)
x(1 8) FFT x1

x(6) 2-POINT TWO x(18)
x(22) FT4- x(19)

X(1 0) 2-POINT POINT x(20)
x(26)x(21)

x~l 4 2- Tx(22)
x(30) Fx(23)

x(3) 2POINTx(24)

X09)=:5Dx(25)

FFT x(26)
*x(23) 4-x(27)

X~l 1 2-PINT OINTx(28)
x(27)FFT~sx(29)

x(15) - 2-OINTx(30)
x(31)_____ x(31)

* Figure b. Partial Flowchart for a 32-Data-Point FFT Using Une
Radix-2 Stage Followed by Two Radix-4 Stages

20

TR 7363

A formula will now be derived for a mixed-radix FFT when radix-4 stages
are performed first and the radix-2 stage is performed last. In this case,
there are (V - 2) radix-4 stages with multiplying coefficients done in four
pipes, one radix-4 stage done in two pipes, and one radix-2 stage done in
one pipe. The total number of complex multiplies is determined by
multiplying the number of stages by the number of parallel multiplies per
stage. Thus, the

VF 2) LN1+ 3N N (52)
NCM (number of complex multiplies) 4(V - 4J-- 24 2 '

which reduces to

T t6 (3V 8). (53)

Similarly, when the radix-2 stage is performed first, there are (V - 1)
radix-4 stages done in four parallel pipes, one radix-4 stage done in a
single pipe, and a radix-2 stage done in four pipes, which has no
multiplying coefficients other than +1. The total number of serial complex
multiplies, considering the parallelism of the four pipes, is

NCM = V -_) N + _ (54)

which reduces to

NM (3V + 9). (55)

The difference between the NCM for the two formulas, above, is N/16.
This difference is not a significant percentage of the number of complex
multiplies. The stage order is really driven by the complexity involved in
shuffling data between pipes since the first case requires shuffling for two
stages.

21

0-

* -TR 7363

OPERAND MEMORY

Another advantage of the radix-4 parallel pipe arrhngement when
computing the FFT is that three of the operand memories need hold only one
quarter of the total sample size. However, the operand memory, which serves
to combine the four individual results in the last stage, must be large
enough to hold all N points. The computation scheme described is
essentially an in-place scheme. Four temporary locations must be allocated
for the four values, Go(m), G1(m), G2(m), and G3(m), and their
values must be saved each time m is varied from 0 to (N/4) - 1 in each stage.

BIT REVERSAL TO RE-ORDER INPUT DATA

This section discusses why and how the input data sequence should be
. re-ordered before proceeding with the FFT computations. By re-ordering the

input sequence,

. the FFT computations require less temporary storage,
• the resulting output sequence is in its natural order, and
* the address generation required to index to the proper data points

and coefficients is simplified.

The discussion on re-ordering begins with the simple radix-2, then the
radix-4, and finally the mixed radix, radix-2 and -4.

* In the derivation of the radix-2 decimation-in-time algoritnm, 2 the
original input sequence is first sorted into even and then odd numbered data
points. Next, the even numbered points are sorted into an even and an odd
group. Similarly, the odd points from the first sort are also sorted into
an even and an odd group. The sorting process, breaking each group into new
even and odd groups, continues in each stage until there are only two points
left in each group, and they are already sorted into even and odd because
there are only two points in a set.

• An example of this process is shown in table 2, where the original
- binary ordering, the ordering after the first sort, and the ordering after

the second sort are listed. A third sort is not necessary.

22

* -" ; ; - **l ii i~m~ '
- L

,
-

. ,

TR 7363

Table 2. Successive Sorts of Input Data Points for a Raoix-2 FFT

Uriginal Binary Ordering First Sort Secono Sort

J2JiJo JIJOJ2 JoJiJ 2

000 000 000 Even
001 010 100
010 100 Even 010 Odd
011 110 110
100 001 0001 Eve
101 011 101 Even
110 101 Odd 011
111 11i ll Odd

After the first sort all the even data points are in the first half of
the sorted sequence, and the odd points are in the second half of the
sequence. The same result is obtained by considering the least significant
bit, Jo, in the original binary ordering to be the most significant bit,
and the most significant two bits, J2J1, to be the least significant
ones, i.e., (JoJ2 Jl) 2. The second sort in table 2 separates the
even points from the first sort into even and odd points, ana the odd points
from the first sort are also separated into even and odd points. Observe
tnat the same result is obtained by making the most significant bit, J1 ,
of the J2JI bit pair the most significant bit to obtain the pair
JiJ 2. As there are only two points in the resulting subsequence and
they are already in even and then odd order. A third sort is not necessary.

After sorting, the location of an original data point can be determined
by performing the well-known bit reversal procedure for radix-2 FFT's. That
is, if (J2JiJu) 2 is the binary representation of an original point,
that point ends up in location (JoJ1J2)2 following the sorting in

. the various stages required to compute the FFT.

The above process is generalized for radix-4 by sorting the original N-
. point sequence into four subsequences composed of the data points 4r, 4r + 1,

4r + 2, and 4r + 3, r - 0, 1, ... , (N/4) - 1. Then, each of the four
* resulting subsequences is independently sorted the same way; i .e.,

subsequence 4r is sorted into 4q, 4q + 1, 4q + 2, and 4q + 3, q = 0, 1,
(N/16) - 1.

The sorting process continues for log4 (N) stages. The original data
can be re-ordered by bit reversing the base four jigits or by pair-wise
reversing the binary bit representations of tne sample index. For example,

23
0m.

TR 73b3

i f 'J3J2JiJu)2 is the binary representation of the original
sequence, the sorted sequence will be ordered as (JiJoJ3J2)2.

If the original set of data points contains N = 43 points, then three
sorts are required, although the last sort need not be performed as therewould be only 4 points in the resulting 16 subsequences to sort, and they
are already automatically sorted. If the binary representation of the
original sequence were (J 5J4 J3 J2JIJO) 2 , the points would end
up in the location represented by (JIJoJ 3J2J5J4)2 from which
the radix-4 FFT would be performed.

For the mixed-radix FFT, the sorted ordering of the data can be
obtained by reversing either bits or pairs of bits. As an example, suppose
32 = 2.42 data points are to be transformed by performing a
decimation-in-time FFT having a radix-2 stage first, followed by two radix-4
stages. Note that in the derivation of a radix-2/-4/-4 FFT, a radix-4 stage
would be derived followed by another radix-4 stage and then a radix-2
stage. However, the radix-2 stage would be computed first, followed by the
two raaix-4 stages. Let (J4J3J2J1 Jo be the binary
representation of the original data sequence. The input data would be
sorted by 4's, then by 4's again, and finally by 2's into even and odd
points. The reversal procedure would be WJ2J1JoJ 4J3), then (00
J2JiJ 4J3)2, where the entities J4J3 and J2J1 are treated
as pairs that remain in fixed positions relative to each other.

The above re-ordering is necessary prior to any computation so that the
FFT can be carried out "in place." If the flow diagram is drawn for each
stage of the FFT, the data points on the same norizontal level transform
into points on that same horizontal level. No temporary memory need be
alloc ated except for two locations in the radix-2 kernal and four in the
radi x-4 kernal.

The net effect of performing the radix-2 kernal (butterfly) or radix-4
kernal (dragonfly) on re-ordered data is that the resulting frequency data
points of the FFT end up in their correct order and the intermediate memory
locations can be overwritten during each stage of the FFT computation.

The digit-reversal procedure can take place in hardware simply by
building a binary counter that counts from the left (most significant bit)
or by transposing the wires from a normal counter, as shown in figure 7.
This counter is used to index into the original data set to obtain the
properly re-ordered data points.

The digit reversal counter can be generalized to any radix knot
necessarily powers of 2) by using an adder circuit that causes a register to
step tnrough a oit reversed sequence of any radix, as shown in tigure S.
here tthe adder is ainary, but the aouer increments are chosen to simulate a

z4

0

A
TR 7363

DIGIT REVERSED
OUTPUT

VARIABLE
INCREMENT

ADE

Figure 7. Digit Reversal for a Radix 2/-4/-4 FFT

CLOCKTTTLT

b b1
*4 3 2 10

Figure 8. Generalized Bit Reversal Hardware

25

TR 7363

counter of any mixed radix desired, like 3, 5, 4, where the number of data
points is factorable as N = (3)(5)(4).

Sample sizes that are not powers of 2 are generally not necessary 3

and create awkward hardware.

INVERSE OFT's

The exact same parallel processing FFT algorithm and hardware discussed
here can be used to compute the inverse OFT, which is given by

N-i ~ iikx(k) E X(ile ik (56)

i=O

The inverse DFT can be obtained using the forward transform
* coefficients and by

A
1. conjugating X(i) to obtain X(i),
2. performing the forward transform to obtain

A N-I -
x(k) E 2 TCTTe 2 k (T7

i-O N

and

A
3. dividing x(k) by N and conjugating the result to obtain

x(k) , X4. (58)

In other words, to obtain the inverse DFT simply conjugate tne input data
points, take forward transform, divide by N, and conjugate the result.

2

-6

.

TR 7363

CONCLUSION

A method was devised to efficiently utilize a loosely interconnected,
SIMU four parallel pipe arithmetic processor with a single common
coefficient memory to compute the FFT. Previously users of this
architecture employed the four pipes to execute four independent FFT's on
four independent data sets, thereby limiting its use.

The method described here uses the four parallel pipes to compute a

single FFT approximately four times faster than that possible in a single

pipe arithmetic processor. A decimation-in-time radix-4 FFT alyorithm thz
is adapted to allow the computation to proceed on the four parallel pipes is
derived. Basically the original N-point data set is separated into four N/4
point data sets, and each of these points is partially transformed in each
of the four pipes. The four pipes operate in parallel until the last stage,
at which time one pipe must be used to finish the computation.

Formulas showing the addition and multiplication time needed to compute
an N-point radix-4 FFT are derived and described here. A comparison of
computing an FFT in a single pipe versus four parallel pipes is made to show
that a fourfold decrease in execution time is possible with the four
parallel pipes. Also, a method is shown for computing an FFT whose length
is not a power of 4. An example of mixing radix-2 and -4 stages shows that
the radix-2 stage can be performed first or last. Formulas for the
execution time of the mixed radix FFT computation are given.

It is advantageous to re-order the input data in the described FFT

scheme because "in-place-computations" can save memory and also the output

appears in the correct order. In -addition, for an N-point transform, three
operana memories need be N/4 words, and one operand memory must oe N words
in size.

A generaiized method for re-ordering thc data is preserteC tlat a,,os

data to be prescrambled for radix-2, -4, or rixed-rad';.cs. T!'s re-ordcring
r;.ethcd uses an arrangement of a binary courter that courts from t c most
significart rather than from the least significant bit. The GLtpLt Lf ti :s

-'- counter can be used to index naturQfly ordered input data polints and .catc
the appropriate scrabled data points fcr the radix-2 (butterfly) or the
radix-4 (dragonfly) FFT computations.

Finally a method is shown that allows the same computations to produce
the inverse UFT. The computation method described here can be generalized
to any radix FFT and to any number of parallel processing data pipes in an
arithmetic processor.

27/28
Reverse Blank

i

TR 7363

REFERENCES

1. R. R. Shively, "Architecture of a Programmable Digital Signal
Processor," IEEE Transactions on Computers, vol. C-31, no. 1, January
1982, pp. 16-22.

2. A. V. Oppenheim and Ronald W. Schafer, Digital Signal Processing,
Prentice-Hall Inc., Englewood Cliffs, NJ 1975.

3. G. D. Bergland, "A Guided Tour of the Fast Fourier Transform," IEEE
Spectrum, vol. 6, July 1969, pp. 41-52.

29/30
Reverse Blank

• P - . °,- i, .. . ° ., . - . ,° . . o . • . • . . ° . . . ° . o , i M i ,~~~~~~~~~~~~~~.".'.............'' na''luOn~'n .. ,. ,;..........................

TR 7363

BIBLIOGRAPHY

1. Bergland, G. D., and D. E. Wilson, "A Fast Algorithm for a Global,
Highly Parallel Processor," IEEE Transactions on Audio and
Electroacoustics, vol. Au-17, no. 2, June 1969, pp. 125-127.

2. Cooley J. W. and J. W. Tukey, "An Algorithm for the Machine Calculation
of Complex Fourier Series," Mathematics of Computation, 1965, vol. 19,
no. 90, 1965, pp. 297-301

3. Cochran, W. T., J. W. Cooley, D. L. Favin, H. 0. Helms, R. A. Kaenel,
W. W. Lang, G. C. Maling, D. E. Nelson, C. H. Radar, and P. D. Welch,
"What is the Fast Fourier Transform," IEEE Transactions on Audio and
Electroacoustics, vol. Au-15, June 1967, pp 44-45.

* 4. Morris, L. R., "Time Efficient Radix-4 Fast Fourier Transform," in
Programs For Digital Signal Processing, edited by the Digital Signal
Processing Committee for the IEEE Acoustics, Speech and Signal
Processing Society, IEEE Press, 1979, pp. 1.8-1 through 1.8-11

5. Pease, M. C., "An Adaptation of the Fast Fourier Transform for Parallel
Processing," Journal of the Association for Computing Machinery, vol.
15, no. 2, April 1968, pp. 305-316.

6. Singleton, R. C., "An Algorithm for Computing the Mixed Radix Fast
Fourier Transform," IEEE Transactions on Audio and Electroacoustics,
vol. Au-17, no. 2, June 1969, pp. 93-103.

6

31/32
Reverse Blank

I-

INITIAL DISTRIBUTION LIST

Addressee No. of Copies

NRL (Codes 5150 (R. Stevens), 5155 (G. Ross)) 2

NAVSEASYSCOM (PMS-412 (G. Melcher, CMDR W. Hatcher, 5

H. Taylor, I. Hall, CAPT Goodman))

NAVAIROEVCEN (Codes 5013 (A. Gropp), 5021 (L. Hart, 5

R. Peck (2), 3032 (T. Stover))

NOSC Codes 551 (C. Morrin), 552 (J. Anderson), 9

723 (J. Hall, A. White), 724 (D. Gurwell,

G. Ottlnger), 7205 (J. E. Watring,

C. Whitson), 951 (J. Dickinson))

NAVAL WEAPONS SUPPORT CENTER (Code 6334 (S. Oliphant)) 1

OTIC, Alexandria 12

ANALYTIC DISCIPLINES, INC. (ADI) (F. Bloch) I

TRW, INC. (TRW) (A. Toutsi, (TRW-WI 5410)) 1

(3. Ling, (TRW-WI 4667)) 1

AT&T TECHNOLOGIES, INC. (E. Rutherford, EMSP I

Burlington, NC 27215 Engr. Manager)

(C. Farlow, EMSP Firmware 1

Development)

AT&T TECHNOLOGIES, INC. (L. MacDougal, EMS Development 1

Whippany, N3 07981 Environment Software)

(R. Shively, EMSP Processor I

Design Group)

. ..

FILMED

0 8-85

* DTIC

